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Abstract. A stationary cylindrically symmetric electrovac solution of the Einstein-Maxwell 
equations is derived in which the electromagnetic field is null. The resulting space-time 
contains no time-like hypersurface-orthogonal Killing fields so that i t  is non-static. 

1. Introduction 

Despite the existence of well known bana fide (i.e. non-static) stationary axially 
symmetric electrovac solutions to the Einstein-Maxwell equations, it is difficult to 
find such solutions for the  case of cylindrical symmetry in the literature. The only 
example in the exhaustive survey of Kramer et a1 (1980) is that due to Wilson (1968). 
However, a careful check of the latter shows that it is not in fact an electrovac solution 
(this has subsequently been checked by M MacCallum who comes to the same 
conclusion). The stationary cylindrical solutions of Arbex and Som (1973) correspond 
to taking w =constant in (2.1) below and, as noted by the authors themselves, are 
simply static fields viewed from a rotating coordinate system. 

In  the present paper we exhibit a stationary cylindrically symmetric electrovac 
space-time that has no hypersurface-orthogonal time-like Killing fields and is therefore 
non-static. The integration of the Einstein-Maxwell equations is facilitated by taking 
the electromagnetic field to be null. In 92 the metric is derived and in 93 the properties 
of the resulting space-time are discussed. 

2. The metric 

The metric of a stationary cylindrically symmetric electrovac space-time may be 
written in the form 

d s 2 =  - f (d t+w dq5)Z+f-1[r2d#J2+e2L(dz2+dr2)]  (2.1) 
where (4, z ,  r)  are cylindrical coordinates and f ,  w and U are functions of r only. The 
only non-zero components of the electromagnetic field tensor with respect to the 
obvious orthonormal basis 

8" =f1'2(df + w d d )  8'  = f - ' / ' r  dq5 

82 = f-1/2eL. dz  f - ' / '  dr (2.2) 
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are F03 = -F30 and F13 = -F31. The Einstein-Maxwell equations are 

d F = O  d*F  = 0 (2.3) 

Rat, = - K E a b  (2.4) 
where 

(2.5) * F = '  cd (I A 8 b  F = Fa& A 8' 2 q a b c d F  e 

The indices refer to the orthonormal basis throughout. 
We seek solutions of these equations for which Fo3 = F 1 3  = u(r) (say). This means 

that the electromagnetic field is null with k" = (1 ,  - 1 , O ,  0) as the degenerate principal 
null direction and the only non-zero components of Eab are Eoo, Eol and El with 

(2.7) KEO~ = KEO~ = K E I ~  = 2u2. 

The equations (2.4) reduce to 

r 2 f f n - r 2 f , 2 + r f f 1 + P w ' 2 = 4 r 2 f u 2  e2' (2.8) 

(2.10) 

while the equations (2.3) yield 

u ' + u v ' = O  (2.11) 

and 

f2uw'-rf(u '+ uu' )  - u(f-rf)  = 0 (2.12) 

where prime denotes derivative with respect to r. 
Integration of equations (2.11) and (2.12) determines u as a function of U and w 

as a function of r and f. On substituting in (2.8) and (2.9) it is found that these two 
give the same equation forf, so that what at first sight appeared to be an overdetermined 
system is in fact not so. Equation (2.10) is then easily integrated. The final result is 

f = 4 a 2 r 2 + c r  log(pr) w = b + r f - '  
e "=qr  -1/4 f I / 2  = aq- l r1 /4f -1 /2  (2.13) 

where a, b, c, p and q are constants of integration with p > 0, q > 0. For the case in 
which b # 0 we can put b = k l  without loss of generality, by simply rescaling the 
coordinates t, r and z and the remaining constants of integration. 

Note that if a = 0, so that there is no electromagnetic field, we recover one of the 
three types of van Stockum (1937) vacuum metria (see also Tipler 1974, Bonnor 
1980). A thin shell source has been constructed for this purely gravitational case by 
Jordan and McCrea (1982) and the mass per unit coordinate length of z ,  calculated 
in accordance with a standard definition, was found to be (1  + c)/4 in the notation of 
the present paper. This would suggest that in the electrovac case the value of the 
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constant c in (2 .13 )  is a measure of the material mass of the presumed source, while 
clearly the value of a would be a measure of the charge. It would obviously be 
desirable to match the metric (2.1), (2.13) to a physically reasonable interior solution, 
but this has not yet been done. 

3. Properties of the space-time 

Since g = det(gij) = -r2 e2”/f2 < 0 the signature of the metric is correct everywhere. 
The coefficient of d 4 2  is given by 

gdm = f - ’ ( r 2 - f 2 w 2 )  = - r [ 4 a 2 b 2 r + b 2 c  l o g ( p r ) + 2 b ]  ( 3 . 1 )  

so that for sufficiently large values of r the vector field 8/84 is certainly time-like, 
which implies the existence of closed time-like curves. The existence of such curves 
for smaller values of r will depend on the positive or negative character of b, c and 
( r  - p - ’ ) .  For the corresponding purely gravitational vacuum case (a  = 0) considered 
by van Stockum, Tipler and Bonnor (Case I1 of Bonnor, equation ( 3 b )  of Tipler) 
where the vacuum exterior is matched to a dust interior solution, the constants b and 
c are negative and r > p - ‘  so that closed time-like curves are excluded. However, 
even in the purely gravitational case (Case I11 of Bonnor, equation ( 3 c )  of Tipler) 
such lines do occur. Note that if b = 0, 8/84 is null for all values of r. 

The Weyl tensor is of the Petrov type 11, the degenerate principal null direction 
being the same as that of the electromagnetic field. Of the 14 curvature scalars (see, 
for instance, Campbell and Wainwright 1977) only two are non-zero, namely 

(3 .2 )  

where Cabcd is the Weyl tensor. The remaining two pure Weyl scalars vanish identically 
together with all the pure Ricci and mixed scalars. 

The three Killing vector fields alar ,  8/84 and a/& span the Lie algebra of the 
complete isometry group. To see this we note that, since the curvature invariants I I  
and Z3 are functions of r, the orbits of the group are three dimensional. Furthermore, 
since the Weyl tensor is type I1 the principal tetrad is uniquely determined up to signs 
and hence the isotropy group is discrete i.e. zero dimensional. Thus the isometry 
group is three dimensional (see Kramer et al 1980, pp 59 and 114-5). 

In one of the van Stockum space-times (Case I of Bonnor, equation ( 3 a )  of Tipler) 
there are time-like hypersurface-orthogonal (HSO) Killing fields which means that the 
space-time is, at least locally, static. For the metric (2 .1 ) ,  (2.13) with b # 0, if one 
considers a general Killing field of the form 

a a a 
at ad az 

e =  no - + n l  -+n2 - (3.3) 

where no, n l ,  n2 are constants, it is found to be HSO if n 1 = -no/b,  n2 = 0 or if no = n l  = 0, 
n2 # 0. In the former case it is null and in the latter space-like. For b = 0, 4 is HSO 

if either n l  # 0, no = n2 = 0 or n2 # 0, no = nl  = 0 and therefore 5 is again either null 
or space-like. Thus the metric (2 .1 ) ,  (2 .13 )  yields a non-static stationary space-time. 



1590 J D McCrea 

4. Conclusion 

The space-time presented above is an example of a strictly (i.e. non-static) stationary 
cylindrically symmetric electrovac field. The possibility of matching this solution to 
a physically reasonable source is being investigated. 
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